
0.1 Introduction

The fast hand-over problem consists in speeding up the classic hand-over procedure (Section
??) without dropping any already established connection and guaranteeing an acceptable
continuity to real-time services.

The actual B.A.T.M.A.N. behaviour in case of hand-over simply consists in attaching the
new client information (called HNA) to the next OGM sent out by the new Access Point so
that every node in the network can learn the new route to the client as soon as each node
receives the message (the other direction of the connection will obviously work because the
client will use the routes already known by the new mesh node, Figure 1). This behaviour
introduces a delay caused by the travel time of the OGM which is stricly connected to the
B.A.T.M.A.N. convergence time. Usually this time is no more than a few seconds but if we
imagine a scenario in which the clients are using VoIP or video streaming applications this
could obviously lead to a services degradation.

Now that we know the general problem, let’s analyze two different scenarios: a network
with a single gateway and a network with multiple gateways.

Figure 1: Hand-over with B.A.T.M.A.N. The moving Client ’D’ will immed-
tiatly send the packets through the correct route, while Node ’C’ will still use
the wrong route until it will receive the new OGM from B

0.2 Into the solution

The new idea tries to take into account both problems and to solve them at the same time.

0.2.1 Announcing HNAs

Regarding the maximum HNA size problem, we decided to completely avoid to announce the
whole local translation table in each OGM. Instead, each node will have a HNA VERSION NUM
that starts from zero on node bootup and that will be increased on each HNA change
(adding/removing a client). This value will be spread around within each OGM (in a new
field). In this way, every node in the network will be able keep track of the changes of the
node tables simply storing an array of values, one per node (*HOW TO EFFICIENTLY
MANAGE THIS?*), other than the whole global translation table.

In case a node received an OGM with a HNA VERSION NUM greater than the value
it stored for the source of the message (OGM.SRC from now on), a HNA FAULT event will

1



occur and a TT QUERY REQUEST will be issued and sent in unicast to OGM.SRC to
request an HNA update.

The TT QUERY REQUEST message will contain the following fields:

1. SRC: the source of the request

2. DST: the destination of the request

3. OBSOLETE HNA VERSION NUM: the version number known by the requester

4. NEW HNA VERSION NUM: the version number seen in the OGM by the re-
quester for which the node is issueing the request

5. TABLE START: the HNA entry from which the response have to start. Usefull for
TT QUERY RESPONSE request for retransmission

The node receiving a TT QUERY REQUEST will reply with a TT QUERY RESPONSE,
which will contain the last changes made in case that the OBSOLETE HNA VERSION NUM
is at most MAX KEEP HISTORY less than the actual value, while the whole local transla-
tion table otherwise.

The nodes in the path of a TT QUERY REQUEST have to inspect the message and
check whether they already know such NEW HNA VERSION NUM for the destination of
the request.

The TT QUERY RESPONSE message will contain the following fields:

1. SRC: the source of the response

2. DST: the destination of the response

3. HNA VERSION NUM: the fresher HNA VERSION NUM for the source of the
response

4. TABLE SIZE: the size of the translation table being transmitted in number of ad-
dress. If 0, the response contains only changes

5. if (TABLE SIZE ¿ 0)

(a) TABLE START: the identification number of the first address in the transla-
tion table (usefull in case of TT QUERY RESPONSE fragmentation to check for
missing packets)

(b) FRAG: if 1, this is not the last TT QUERY RESPONSE message that composes
this reply

(c) DATA: the whole local translation table containing TABLE SIZE addresses

else

(a) DATA: an array of struct tt change of length at most MAX KEEP HISTORY

2



The struct tt change is simply composed as follows:

struct tt change {
char oper; //1 if the address has been added, 0 if removed
char addr[6]; //the address

}

The nodes in the path from the source to the destination of the TT QUERY RESPONSE
have to inspect the message and possibly gain information from it.

In the event of a lost TT QUERY RESPONSE, that can be detected using the FRAG
and the TABLE START fields of the received fragments, a TT QUERY REQUEST can be
sent specifing in the TABLE START field the starting HNA from which we want to start
the recovering. (*how to indicate the end?*)

0.2.2 Handling the roaming phase

Actually there is not a real handling procedure for the romaing phase in B.A.T.M.A.N. With
this new HNAs announcing mechanism we also try to improve this scenario.

In case of a new client connecting to a mesh node, on the first packet generated by
the client (so that the mesh node can detect it) a ROAMING ADV packet will be sent in
broadcast by the mesh node.

The ROAMING ADV message will contain:

1. SRC: the new mesh node to which the client is connected

2. CLIENT ADDR: the client address

3. HNA VERSION NUM: the source translation table version number

4. OLD NODE: the old node to which the client was connected (in case of roaming)

In this way all the node that will receive the message will update their gobal translation
table with this new information.

To improve the mechanism, the new node could first send a ROAMING ADV in unicast
to the old mesh node (if any) so that all the packets that are still flowing to it will be
immediatly redirected to the new mesh node.

The broadcast ROAMING ADV message will be spread over the network with the same
mechanism of a normal OGM message.

0.2.3 Forwarding a packet

A mesh node sending a unicast packet to a client node has to include the destination mesh
node’s HNA VERSION NUM within the BATMAN HEADER. In this way, every mesh
node in the network that will have to forward the packet can first check whether it has
an higher destination mesh node’s HNA VERSION NUM and check if the client node is

3



still connected to it. In case of negative response, the forwarding mesh node will search for
the new mesh node to which the client is connected and will modify the destination and
HNA VERSION NUM fields of the packet before forwarding it.

0.2.4 Notes and Issues

• Some resending mechanisms must be taken into account to manage packet loss in the
various scenario.

• The fragmentation of the TT QUERY RESPONSE must be analized deeper

• I assumed that a node increase its HNA VERSION NUM by one per one operation.
So every increment can be described with one struct tt change emelent.

• In case of TT QUERY REQUEST with TABLE START greater than 0 (for retrans-
mission request), how can we indicate the ”end”?

4


	Introduction
	Into the solution
	Announcing HNAs
	Handling the roaming phase
	Forwarding a packet
	Notes and Issues


